
CS106A
Winter 2012-2013

Handout #20
February 8, 2013

Assignment 4: Hangman

 Based on a handout by Eric Roberts and Mehran Sahami

Due Wednesday, February 20 at 3:15PM

For this assignment, your mission is to write a program that plays the game of Hangman. As an
assignment, Hangman serves two purposes. First, the program is designed to give you some practice
writing programs that manipulate strings and files. Second, by extending the program using the
graphical tools from Chapter 9, you will have a chance to work with multiple classes in a single
application.

When the user plays Hangman, the computer first selects a secret word at random from a list built into
the program. The program then prints out a row of dashes—one for each letter in the secret word—and
asks the user to guess a letter. If the user guesses a letter that is in the word, the word is redisplayed
with all instances of that letter shown in the correct positions, along with any letters correctly guessed
on previous turns. If the letter does not appear in the word, the user is charged with an incorrect guess.
The user keeps guessing letters until either (1) the user has correctly guessed all the letters in the word
or (2) the user has made eight incorrect guesses. Two sample runs that illustrate the play of the game
are shown in Figure 1 on the next page.

When it is played by children, the real fascination (a somewhat morbid fascination, I suppose) from
Hangman comes from the fact that incorrect guesses are recorded by drawing an evolving picture of
the user being hanged at a scaffold. For each incorrect guess, a new part of a stick-figure body—first
the head, then the body, then each arm, each leg, and finally each foot—is added to the scaffold until
the hanging is complete. For example, the three diagrams below show the drawing after the first
incorrect guess (just the head), the third (the head, body, and left arm), and the diagram at the tragic
end of a losing game:

- 1 -

In order to write the program that plays Hangman, you should design and test your program in three
parts. The first part consists of getting the interactive part of the game working without any graphics at
all and with a fixed set of secret words. The second part consists of building a separate class that
maintains the scaffold diagram. The final part requires you to replace the supplied version of the secret
word list with one that reads words from a file. The rest of this handout describes these three parts in
more detail.

Figure 1. Two sample runs of the Hangman program (console only)

Note that your program only needs to be able to play the Hangman game once through (i.e., the player
guessing one word), but it should be pretty easy to extend your program to allow the player to play
multiple rounds (i.e., guessing a word multiple times).

- 2 -

Part I—Playing a console-based game

In the first part of this assignment, your job is to write a program that handles the user interaction
component of the game—everything except the graphical display. To solve the problem, your program
must be able to:

• Choose a random word to use as the secret word. That word is chosen from a word list, as described
in the following paragraph.

• Keep track of the user’s partially guessed word, which begins as a series of dashes and then gets
updated as correct letters are guessed.

• Implement the basic control structure and manage the details (ask the user to guess a letter, keep
track of the number of guesses remaining, print out the various messages, detect the end of the game,
and so forth).

The only operation that is beyond your current knowledge is that of representing the list of words from
which you can choose a word at random. For the first two parts of the assignment, you will simply
make use of a class that we’ve given you called HangmanLexicon that provides a small list of words
that will allow you to test your program. (A lexicon is very much like a dictionary, but does not
necessarily include definitions, which makes it a more appropriate name for a class that provides a list
of words with no associated meanings.) The implementation of the class you’ve been given is only a
temporary expedient to make it possible to code the rest of the assignment. In Part III, you will replace
the definition we’ve provided with one that reads a list of words from a data file.

The strategy of creating a temporary implementation that provides enough functionality to implement
the rest of the program is a common technique in programming. Such temporary implementations are
usually called stubs. In this assignment, the starter project comes with a stub implementation of the
HangmanLexicon class, which appears in Figure 2 on the next page. The class contains two public
methods: getWordCount(), which returns the number of words in the lexicon, and getWord(i), which
returns the word at index i. Like all indices in Java, the value i runs from 0 to one less than the
number of words.

- 3 -

Figure 2. Stub implementation of HangmanLexicon

/*
 * File: HangmanLexicon.java
 * -------------------------
 * This file contains a stub implementation of the HangmanLexicon
 * class that you will reimplement for Part III of the assignment.
 */

import acm.util.*;

public class HangmanLexicon {

/** Returns the number of words in the lexicon. */
public int getWordCount() {

return 10;
}

/** Returns the word at the specified index. */
public String getWord(int index) {

switch (index) {
case 0: return "BUOY";
case 1: return "COMPUTER";
case 2: return "CONNOISSEUR";
case 3: return "DEHYDRATE";
case 4: return "FUZZY";
case 5: return "HUBBUB";
case 6: return "KEYHOLE";
case 7: return "QUAGMIRE";
case 8: return "SLITHER";
case 9: return "ZIRCON";
default: throw new ErrorException("getWord: Illegal index");

}
};

}

A game that used this implementation of the HangmanLexicon class would quickly become
uninteresting because there are only ten words available. Even so, it will allow you to develop the rest
of the program and then come back and improve this part later.

Part I is a string manipulation problem using the methods developed in Chapter 8. The sample runs in
Figure 1 should be sufficient to illustrate the basic operation of the game, but the following points may
help to clarify a few issues:

• At the beginning of your run method, you need to create a new HangmanLexicon and store it in an
instance variable. If you extend the program to allow the user to play multiple games, the creation
of the HangmanLexicon should be performed outside the loop that plays the game repeatedly so that
this operation is performed once rather than for every game.

• You should accept the user’s guesses in either lower or upper case, even though all letters in the
secret words are written in upper case.

• If the user guesses something other than a single letter, your program should tell the user that the
guess is illegal and accept a new guess.

- 4 -

• If the user guesses a correct letter more than once, your program should simply do nothing.
Guessing an incorrect letter a second time should be counted as another wrong guess. (In each case,
these interpretations are the easiest way to handle the situation, and your program will probably do
the right thing even if you don’t think about these cases in detail.)

Remember to finish Part I before moving on to Part II. Part II is arguably more fun, but it is essential
to develop large programs in manageable stages.

Part II—Adding graphics

For Part II, your task is simply to extend the program you have already written so that it now keeps
track of the Hangman graphical display. Although you might want to spice things up in your
extensions, the simple version of the final picture for the unfortunate user who has run out of guesses
looks like this:

The scaffold and the tiny bit of rope above the head are drawn before the game begins, and then the
parts are added in the following order: head, body, left arm, right arm, left leg, right leg, left foot, right
foot. Because this picture is simpler than most of the figures you have drawn for section problems, the
challenge of this part of the assignment does not lie so much in using the acm.graphics package but
rather in implementing the separation of functions between the class that performs the console-based
interaction and the class that manages the display. That class is called HangmanCanvas and is included
in the starter project in the form of the stub implementation shown in Figure 3 on the next page.

- 5 -

Figure 3. Stub implementation of HangmanCanvas

/*
 * File: HangmanCanvas.java
 * ------------------------
 * This file keeps track of the Hangman display.
 */

import acm.graphics.*;

public class HangmanCanvas extends GCanvas {

/** Resets the display so that only the scaffold appears */
public void reset() {

/* You fill this in */
}

/**
 * Updates the word on the screen to correspond to the current
 * state of the game. The argument string shows what letters have
 * been guessed so far; unguessed letters are indicated by hyphens.
 */

public void displayWord(String word) {
/* You fill this in */

}

/**
 * Updates the display to correspond to an incorrect guess by the
 * user. Calling this method causes the next body part to appear
 * on the scaffold and adds the letter to the list of incorrect
 * guesses that appears at the bottom of the window.
 */

public void noteIncorrectGuess(char letter) {
/* You fill this in */

}

/* Constants for the simple version of the picture (in pixels) */
private static final int SCAFFOLD_HEIGHT = 360;
private static final int BEAM_LENGTH = 144;
private static final int ROPE_LENGTH = 18;
private static final int HEAD_RADIUS = 36;
private static final int BODY_LENGTH = 144;
private static final int ARM_OFFSET_FROM_HEAD = 28;
private static final int UPPER_ARM_LENGTH = 72;
private static final int LOWER_ARM_LENGTH = 44;
private static final int HIP_WIDTH = 36;
private static final int LEG_LENGTH = 108;
private static final int FOOT_LENGTH = 28;

}

This stub is somewhat different from the one shown earlier for HangmanLexicon. That stub actually
did something, even if it was only a part of what the complete implementation of the class will actually
do. This stub declares several named constants that define the parameters of the picture, but doesn’t
actually use them as yet. The three methods in the stub implementation of HangmanCanvas—reset,
displayWord, and noteIncorrectGuess—do absolutely nothing. This strategy, however, is also
common in programming. The fact that the class exists and exports methods means that you can call
those methods from the console-based Hangman class even before you complete their implementation.

- 6 -

The first thing you should do when you begin Part II is to create a new HangmanCanvas—in precisely
the do-nothing form in which it has been given to you—and install it in the program window next to
the console. The Hangman class itself is an instance of a ConsoleProgram, which means that the
startup code in the ACM libraries has installed an IOConsole in the window that fills the entire space.
Your next task is to add a HangmanCanvas to the program window as well. You will learn much more
about how to do this kind of operation toward the end of the CS 106A, but the code you need for this
part is extremely simple. First, in the instance variables section of the Hangman program, you need to
declare an instance variable for the canvas by writing

private HangmanCanvas canvas;

and then add the following init method to your program:

public void init() {
 canvas = new HangmanCanvas();
 add(canvas);
}

Note that your Hangman program will have both an init and a run method as a result, and that is
perfectly fine. This init method initializes the canvas and adds it to the window prior to the run
method being executed; the run method is where the execution of your game will start after the
window is initialized. By default, the contents of the program window are given equal amounts of
space side by side. Since this is a console program, the console is already installed and will therefore
show up in the left column. When you add the HangmanCanvas it will occupy the second column,
which means that the console and graphics components of the window will each get half the screen
area, as shown in Figure 4 below. Input and output from the Hangman program will continue to appear
on the console, and any objects you add to the HangmanCanvas stored in the variable canvas will
appear in the area on the right.

Figure 4. Screen shot showing side-by-side console (left) and canvas (right)

You can now go through and add the calls to the methods in HangmanCanvas. Every time you start a
game, for example, you will need to call

canvas.reset();

to delete all the body parts from the canvas and redraw the scaffold. Similarly, you will have to call
displayWord and noteIncorrectGuess at the appropriate points in your code. As of yet, nothing will
actually be displayed on the canvas when you make these calls, but your program should run just the

- 7 -

same as it did before, freeing you to concentrate on implementing the methods in HangmanCanvas.
Note that you should not add any more public methods to HangmanCanvas (adding private helper
methods is fine though).

The implementation of HangmanCanvas should be reasonably straightforward. Although the sizes of
the scaffold and the various body parts are given to you, their positions are not specified, so you will
have to do some arithmetic to calculate the coordinates. The center line of the body should be centered
horizontally on the screen, and the scaffold should be displayed a bit higher than the center so that there
is room underneath for two labels: a label in a large font showing the secret word as it currently stands
and a label in a smaller font showing the incorrect guesses. Figure 5 shows how the screen appears at
the end of the tragic session in which the user was unable to guess FUZZY.

Part III—Reading the lexicon from a data file

Part III of this assignment is by far the easiest and requires considerably less than half a page of code.
The only problem is that you won’t have seen the Java facilities you need to do it until the lectures next
week. So the idea is to start with parts I and II and then fill in this final detail at the end.

- 8 -

Figure 5. The tragic ending of a Hangman game

Your job in this part of the assignment is simply to reimplement the HangmanLexicon class so that
instead of selecting from a meager list of ten words, it reads a much larger word list from a file. The
steps involved in this part of the assignment are as follows:

1. Open the data file HangmanLexicon.txt using a BufferedReader that will allow you to read it
line by line.

2. Read the lines from the file into an ArrayList.

3. Reimplement the getWordCount and getWord methods in HangmanLexicon so that they use the
ArrayList from step 2 as the source of the words.

The first two steps should be done in a constructor for HangmanLexicon, which you will need to add to
the file (see below). The last step is simply a matter of changing the implementation of the methods
that are already there.

Here is how the HangmanLexicon constructor should be added to the HangmanLexicon class:

public class HangmanLexicon {

// This is the HangmanLexicon constructor
public HangmanLexicon() {

// your initialization code goes here
}

// rest of HangmanLexicon class...
}

Note that nothing in the main program should have to change in response to this change in the
implementation of HangmanLexicon. Insulating parts of a program from changes in other parts is a
fundamental principle of good software design.

Extensions

There are many ways to extend Hangman to make it more fun. Here are some ideas:
• You could spice up the display a little. Stick figures may be fine for elementary school, but they

seem a bit tame here.

• You could animate the pictures. Instead of having the body parts and letters merely appear on the
screen, you could have them move in from offscreen, as pictures often do, for example, in
PowerPoint slides.

• Once you get the basic structure working, you could expand the program to play something like
Wheel of Fortune, in which the single word is replaced by a common phrase and in which you have
to buy vowels.

• Use your imagination!

- 9 -

